Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Front Med Technol ; 3: 715969, 2021.
Article in English | MEDLINE | ID: covidwho-1631411

ABSTRACT

Background: The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has placed a significant demand on healthcare providers (HCPs) to provide respiratory support for patients with moderate to severe symptoms. Continuous Positive Airway Pressure (CPAP) non-invasive ventilation can help patients with moderate symptoms to avoid the need for invasive ventilation in intensive care. However, existing CPAP systems can be complex (and thus expensive) or require high levels of oxygen, limiting their use in resource-stretched environments. Technical Development + Testing: The LeVe ("Light") CPAP system was developed using principles of frugal innovation to produce a solution of low complexity and high resource efficiency. The LeVe system exploits the air flow dynamics of electric fan blowers which are inherently suited to delivery of positive pressure at appropriate flow rates for CPAP. Laboratory evaluation demonstrated that performance of the LeVe system was equivalent to other commercially available systems used to deliver CPAP, achieving a 10 cm H2O target pressure within 2.4% RMS error and 50-70% FiO2 dependent with 10 L/min oxygen from a commercial concentrator. Pilot Evaluation: The LeVe CPAP system was tested to evaluate safety and acceptability in a group of ten healthy volunteers at Mengo Hospital in Kampala, Uganda. The study demonstrated that the system can be used safely without inducing hypoxia or hypercapnia and that its use was well-tolerated by users, with no adverse events reported. Conclusions: To provide respiratory support for the high patient numbers associated with the COVID-19 pandemic, healthcare providers require resource efficient solutions. We have shown that this can be achieved through frugal engineering of a CPAP ventilation system, in a system which is safe for use and well-tolerated in healthy volunteers. This approach may also benefit other respiratory conditions which often go unaddressed in Low and Middle Income Countries (LMICs) for want of context-appropriate technology designed for the limited oxygen resources available.

2.
Physics of fluids (Woodbury, N.Y. : 1994) ; 33(11), 2021.
Article in English | EuropePMC | ID: covidwho-1602050

ABSTRACT

A dominant mode of transmission for the respiratory disease COVID-19 is via airborne virus-carrying aerosols. As national lockdowns are lifted and people begin to travel once again, an assessment of the risk associated with different forms of public transportation is required. This paper assesses the risk of transmission in the context of a ride-sharing motorbike taxi—a popular choice of paratransit in South and South-East Asia and Sub-Saharan Africa. Fluid dynamics plays a significant role in understanding the fate of droplets ejected from a susceptible individual during a respiratory event, such as coughing. Numerical simulations are employed here using an Eulerian–Lagrangian approach for particles and the Reynolds-averaged Navier–Stokes method for the background air flow. The driver is assumed to be exhaling virus laden droplets, which are transported toward the passenger by the background flow. A single cough is simulated for particle sizes 1, 10

3.
Phys Fluids (1994) ; 33(11): 113319, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1537374

ABSTRACT

A dominant mode of transmission for the respiratory disease COVID-19 is via airborne virus-carrying aerosols. As national lockdowns are lifted and people begin to travel once again, an assessment of the risk associated with different forms of public transportation is required. This paper assesses the risk of transmission in the context of a ride-sharing motorbike taxi-a popular choice of paratransit in South and South-East Asia and Sub-Saharan Africa. Fluid dynamics plays a significant role in understanding the fate of droplets ejected from a susceptible individual during a respiratory event, such as coughing. Numerical simulations are employed here using an Eulerian-Lagrangian approach for particles and the Reynolds-averaged Navier-Stokes method for the background air flow. The driver is assumed to be exhaling virus laden droplets, which are transported toward the passenger by the background flow. A single cough is simulated for particle sizes 1, 10, 50 µ m , with motorbike speeds 1 , 5 , 15 m / s . It has been shown that small and large particles pose different types of risk. Depending on the motorbike speed, large particles may deposit onto the passenger, while smaller particles travel between the riders and may be inhaled by the passenger. To reduce risk of transmission to the passenger, a shield is placed between the riders. The shield not only acts as a barrier to block particles, but also alters the flow field around the riders, pushing particles away from the passenger. The findings of this paper therefore support the addition of a shield potentially making the journey safer.

SELECTION OF CITATIONS
SEARCH DETAIL